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Abstract
For surface systems, the Rashba effect is studied by using a k·p perturbation method. It is
shown that the velocity-operator term in the perturbation gives the generalized Rashba
Hamiltonian, of which a group-theoretical analysis is given to explain variations in the spin
splitting and spin structure expected for typical surface symmetry. The matrix elements of the
velocity and spin-angular-momentum operators play a key role in determining the characteristic
features of the surface Rashba effect. Whether a surface system shows isotropic spin splitting
and vortical spin structure as given by the original Rashba Hamiltonian or not depends on the
group of k appearing in the corresponding two-dimensional Brillouin zone. It is especially
emphasized that the ideal Rashba effect may be realized even for a wavevector k without time
reversal, which is usually believed to be a necessary condition.

1. Introduction

Recently, much attention has been drawn to phenomena
originating from spin–orbit coupling (SOC), such as the
magnetoelectric effect [1], spin Hall effect [2], Rashba
effect [3], and so on. Among these, the Rashba effect
has been recently observed in a variety of surface systems
by means of angle-resolved photoemission spectroscopy
measurements [4–14]. Originally, the Rashba effect was
studied as a phenomenon of spin splitting by an applied electric
field in two-dimensional (2D) electron gas systems [15]. The
Rashba Hamiltonian originating from SOC is given as

HR = αR
(
ẑ × h̄k

) · s (1)

for a free electron with momentum p = h̄k and spin s under an
electric field E = E ẑ. Similar spin splitting can be generally
seen for bulk systems with large SOC and broken inversion
symmetry [16]. The characteristic features of the Rashba
Hamiltonian in equation (1) are the isotropic spin splitting
linear in k and the vortical spin structure, around the center
of the Brillouin zone (BZ).

The surface Rashba effect has been extensively inves-
tigated by means of band-theoretical calculations with SOC

included [17–22]. A simple tight-binding model with SOC
has been used to study the spin splitting for a surface state
on Au(111) and it is found that the splitting depends on
the magnitude of the SOC and the surface potential [17].
First-principles calculations [18–22] have been performed for
Bi(111), Gd(0001), Ag(111), Au(111), Lu(0001) and Sb(111)
surfaces and Ag(111)–Bi, Ag(111)–Pb and Si(111)–Bi ad-
sorbed surfaces, and these have shown that SOC is crucial in
the close vicinity of the nucleus and the Rashba spin split-
ting originates from the asymmetry of the surface-state electron
density about the nucleus rather than the surface potential.

It is widely believed that Rashba spin splitting may happen
around k points that have time reversal. This leads to the
Rashba effect possibly appearing around BZ boundary points
in addition to the BZ center [22]. Figure 1 shows k points with
time reversal in the 2D BZ of square, rectangular and triangular
lattices. Note that K̄ in the triangular BZ has no time reversal.
However, it has been shown for the Si(111)–Bi system [22]
that ideal Rashba spin splitting and spin vorticity around K̄
points are actually predicted. Furthermore, the spin structure
of Rashba-split bands around M̄ that has time reversal is not
vortical, but hyperbolic. Although some symmetry arguments
have been given for the spin splitting and spin structure, under
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Figure 1. Two-dimensional Brillouin zone (BZ) of (a) square lattice
(plane group p4mm), (b) rectangular lattice ( p2mm) and (c)
triangular lattice ( p3m1 and p31m). Solid dots denote k points
which have time-reversal symmetry. Note that K̄ represented by an
open circle in the triangular BZ has no time reversal. Solid black
lines represent k points which have mirror symmetry in (a) and (b).
In (c), blue broken (red solid) lines indicate k points which have
mirror symmetry for the plane group p3m1 ( p31m).

(This figure is in colour only in the electronic version)

which conditions the isotropic spin splitting and spin vorticity
as given by the Rashba Hamiltonian in equation (1) appear are
still unclear.

In this paper, the spin splitting and spin structure brought
about by SOC in surface systems are generally studied on
the basis of a k·p perturbation theory. It is pointed out
that the velocity-operator term in the perturbation leads to
the generalized Rashba Hamiltonian. The matrix elements of
the velocity and spin-angular-momentum operators which are
key in the Rashba effect are inspected via group-theoretical
consideration. Conditions for the ideal Rashba effect and some
variations in the spin splitting and spin structure are examined
for the relevant irreducible representations belonging to the
groups of k in typical 2D BZ.

2. k · p perturbation theory

A Pauli-type (Schrödinger + SOC) one-electron Hamiltonian
is given in Ryd atomic units as

H = p2 + V + c−2 (∇V × p) · σ

where V is the crystal potential, c is the velocity of light, and
s is represented with the Pauli matrix σ as s = σ/2. With the
knowledge of eigenstates at a wavevector k

Hψ(k, r) = E(k)ψ(k, r)

we solve the equation for k + q with

ψ(k + q, r) = eiq·rχ(k, r)

and the one-electron equation becomes

H (q)χ(k, r) = E(k + q)χ(k, r).

Here, the Hamiltonian H (q) is given as [23]

H (q) = e−iq·rHeiq·r = H + q ·v + q2. (2)

The velocity operator v is expressed as

v = 2p + c−2σ × ∇V (3)

and the resulting matrix elements of the Hamiltonian H (q) are
constructed and solved as

Hmn(q) = [
Em(k)+ q2

]
δmn + q · vmn

Em(k) = 〈ψm(k)|H|ψm(k)〉

vmn = 〈ψm(k)|v|ψn(k)〉.

In equation (2), the first-order term in q comes from
the velocity operator. Thus, in order to investigate the band
structure around k, one considers the perturbation of the first
order in q given as

H ′(q) = q ·v

= 2q ·p + c−2q · σ × ∇V (4)

which may be regarded as the generalized Rashba Hamiltonian.

3. Matrix elements of velocity and
spin-angular-momentum operators

Let us consider how to evaluate the matrix elements of a vector
operator a with respect to d degenerate states belonging to
an irreducible representation of the group of k. On assuming
a symmetry operation R and unperturbed degenerate states
{ψi} (i = 1, . . . , d), the matrix elements are

〈a〉i j = 〈ψi |a|ψ j 〉
= 〈Rψi |RaR−1|Rψ j 〉
=

∑

kk′
D∗

ki (R)〈ψk |RaR−1|ψk′ 〉Dk′ j(R)

=
∑

kk′
D∗

ki (R)〈RaR−1〉kk′ Dk′ j (R) (5)

where D(R) is the d×d representation matrix of the irreducible
representation for R. The transformation of the operator a in a
row vector form can be given as

RaR−1 = aR. (6)

If a is a polar vector operator such as velocity or momentum, R
is just the 3 × 3 transformation matrix of the operation R. For
an axial vector operator such as the spin angular momentum,
on the other hand, R takes only the proper rotational part
because inversion, if included, makes the axial vector invariant.
From equations (5) and (6) with replacement R → R−1 and
D(R−1) = D−1(R) = D†(R), one ends up with

〈a〉i j R =
∑

kk′
Dik(R)D

∗
jk′ (R)〈a〉kk′ (7)

which is the master equation for the matrix elements in the
following discussion. Before applying equation (7) to some
particular symmetry cases, general restrictions imposed on the
matrix elements are investigated below.
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Table 1. Symmetry requirements of the matrix elements of polar and
axial vector operators for d-dimensional irreducible representations
of the groups of k appearing in the typical two-dimensional Brillouin
zone. In C1h, the mirror plane is taken on yz.

Group d Polar Axial

C2, C3, C4 1 〈vx 〉 = 〈vy〉 = 0 〈σx 〉 = 〈σy〉 = 0
〈vz〉 �= 0 〈σz〉 �= 0

C2v, C3v, C4v 1 〈vx 〉 = 〈vy〉 = 0 〈σx 〉 = 〈σy〉 = 〈σz〉 = 0
〈vz〉 �= 0

2 〈vx 〉11 = −〈vx 〉22 〈σx 〉11 = −〈σx 〉22

〈vy〉11 = −〈vy〉22 〈σy〉11 = −〈σy〉22

〈vz〉11 = 〈vz〉22 〈σz〉11 = −〈σz〉22

C1h 1 〈vx 〉 = 0 〈σx 〉 �= 0
〈vy〉 �= 0 〈σy〉 = 〈σz〉 = 0
〈vz〉 �= 0

Summing equation (7) over all operations in the group of
k and by using the orthogonality theorem for the representation
matrix, the diagonal matrix elements have a relation

〈a〉ii

∑

R

R = g

d

∑

k

〈a〉kk (8)

where g is the order of the group. When the group contains
only proper rotations like C2, C3 and C4, the relation can be
reduced to

(0, 0, 〈az〉ii ) = 1

d

∑

k

〈a〉kk

for both polar and axial vector operators. This means that the
traces of the x and y components are zero and the diagonal
elements of the z component are the same as each other.
In particular, for C2, C3 and C4, as only one-dimensional
representations are involved, the matrix elements of the x and
y components are zero and its z counterpart may be non-
zero. When the group includes rotational and mirror operations
like C2v, C3v and C4v, the same arguments as above can be
made for a polar vector operator while the trace of all the
components for an axial vector operator becomes zero because
of

∑
R R = 0. In the case of the group C1h with one mirror

operation, only the mirror-plane components of a polar vector
operator and the mirror-normal component of an axial vector
operator survive. In figure 1, k lines that have one mirror
operation are drawn for 2D BZ. It should be noted that the k

lines with the mirror differ between the plane groups p3m1 and
p31m in the triangular BZ.

The general requirements of the matrix elements of
polar and axial vector operators are summarized in table 1
for the groups appearing in the typical 2D BZ. The most
interesting point in table 1 is that degenerate states belonging
to the 2D irreducible representations in C2v, C3v and C4v

can behave just like a time-reversal pair as regards the x
and y components of any polar vector operator and all the
components of any axial vector operator. This may be why
the Rashba effect can take place even for k points that have
no time reversal. Among the typical 2D BZ shown in figure 1,
only K̄ points in the p31m triangular system meet the situation.

Table 2. The group of k at the zone center and some zone boundary
points in a typical two-dimensional Brillouin zone.

Lattice (plane group) k The group of k

Square ( p4mm) �̄, M̄ C4v

X̄ C2v

Rectangular ( p2mm) �̄, X̄, M̄ C2v

Triangular ( p3m1) �̄ C3v

K̄ C3

M̄ C1h

Triangular ( p31m) �̄, K̄ C3v

M̄ C1h

4. Rashba spin splitting and spin structure

If bands show Rashba spin splitting around k, they should be
degenerate states at k with SOC. The groups of k that have 2D
representations in the typical 2D BZ shown in figure 1 are C2v,
C3v and C4v as listed in table 2. In addition, 1D representation
states in some groups are degenerate by time reversal, for
example in C1h at M̄ points in the triangular BZ. In this section,
the generalized Rashba Hamiltonian in equation (4) is analyzed
in detail for such degenerate states by using the master equation
for the matrix elements in equation (7).

4.1. C3v: a 2D representation �6

We shall first consider a 2D representation �6 [24] (�4 in
Bradley’s [25] and Lax’s [23] notations) in the group C3v. If
one chooses R = C3 among the operations, the transformation
matrix is

R =
⎛

⎜
⎝

− 1
2 −

√
3

2 0
√

3
2 − 1

2 0
0 0 1

⎞

⎟
⎠

for both polar and axial vector operators and the representation
matrix is

D =
(
w∗ 0
0 w

)

with w = eπ i/3 [24]. The diagonal matrix element {i j} = {11}
in equation (7) can be written as

〈a〉11R = |w|2〈a〉11

and its x and y components become zero and so does the {22}
element (see table 1). As for the off-diagonal {12} element,

〈a〉12R = (w∗)2〈a〉12

and thus, one gets 〈ay〉12 = −i〈ax〉12. With the matrix
elements for the velocity operator taken as 〈vx 〉12 ≡ X , the
perturbation matrix for q = q(cosφ, sinφ) has the form

H ′(q) =
(

0 q Xe−iφ

q X∗eiφ 0

)
(9)

and the perturbation energy is obtained as

ε± = ±q|X |. (10)
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This result shows that band splitting linear in q is isotropic
on the BZ xy plane and proportional to the magnitude of the
matrix element of the velocity operator |X |. The corresponding
eigenstates are

|±〉 = 1√
2

(
± X

|X |e−iφ |1〉 + |2〉
)

(11)

with the unperturbed degenerate states |1〉 and |2〉. The
non-vanishing matrix elements of the spin-angular-momentum
operator are 〈σx 〉12 = i〈σy〉12 ≡ ζ and 〈σz〉11 = −〈σz〉22 ≡
Z and the expectation values of spin with respect to the
eigensolutions are non-vanishing only on xy and become

〈±|σx |±〉 = ± 1

|X |Re
(
ζ X∗eiφ

)
(12)

〈±|σy |±〉 = ± 1

|X | Im
(
ζ X∗eiφ

)
(13)

implying that the band-split states are actually a spin reversed
pair, and satisfy

q · 〈±|σ |±〉 = 0 (14)

[q × 〈±|σ |±〉]z = const (15)

showing vortical spin structure.
It is, therefore, concluded that the 2D representation �6

state in C3v reveals the isotropic spin splitting and vortical
spin structure just as given by the Rashba Hamiltonian in
equation (1) in any case, regardless of the existence of time
reversal. This explains the ideal Rashba effect possibly
observed not only around �̄ but also around K̄ with C3v in the
triangular BZ.

4.2. C4v: 2D representations �6 and �7

The next example is given for the group C4v. There are two 2D
irreducible representations �6 and �7 in C4v [23–25]. If one
takes R = C4,

R =
⎛

⎝
0 −1 0
1 0 0
0 0 1

⎞

⎠

and the corresponding representation matrix is

D =
( ±u∗ 0

0 ±u

)

with u = eπ i/4 and double signs ± for �6 and �7,
respectively [24]. Following the case of C3v, the matrix
elements of the perturbation Hamiltonian are inspected and
obtained in the same form as for C3v. Thus, the 2D
representation states �6 and �7 in C4v also lead to the ideal
Rashba features, isotropic spin splitting and vortical spin
structure.

4.3. C2v: a 2D representation �5

A slightly complicated result may be expected for the group
C2v. There is one 2D representation �5 in C2v [23–25]. Taking
R = C2, the transformation matrix is

R =
⎛

⎝
−1 0 0
0 −1 0
0 0 1

⎞

⎠

and the representation matrix is given as

D =
( −i 0

0 i

)

for the 2D irreducible representation �5 [24]. For the diagonal
matrix element {11}, one gets

〈a〉11R = 〈a〉11

and thus the x and y components vanish. The off-diagonal
elements are

〈a〉12R = −〈a〉12

and the x and y components remain independent. It is,
furthermore, found by taking a mirror operation for the
matrix elements that the off-diagonal elements of the x and
y components are real and pure imaginary, respectively. On
assuming 〈vx 〉12 ≡ X and 〈vy〉12 ≡ −iY for the non-vanishing
off-diagonal matrix elements of the velocity operator, the
perturbation matrix for q = q(cosφ, sinφ) is represented as

H ′(q) = q

(
0 X cosφ − iY sinφ

X cosφ + iY sinφ 0

)

(16)
and the solutions become

ε± = ±q|X cosφ − iY sinφ| (17)

|±〉 = 1√
2

(
± X cosφ − iY sinφ

|X cosφ − iY sinφ| |1〉 + |2〉
)
. (18)

It is easily seen that the resulting solutions are reduced to the
ones in the cases of C3v and C4v if X = Y . Thus, when the
matrix elements of the velocity operator along the x and y
directions in BZ are isotropic, the ideal Rashba effect should be
found; otherwise anisotropic spin splitting and/or non-vortical
spin structure may possibly happen. Strongly anisotropic spin
splitting seen in the Au(110) surface may be caused by a
large difference in the matrix elements X and Y due to the
anisotropic character of the relevant surface states [14, 22].

4.4. C1h: time-reversal degenerate �3 and �4

As a time-reversal degenerate case, let us consider the band
structure around M̄ points in the triangular BZ shown in
figure 1. The group of k at M̄ points is C1h (see table 2),
which has two 1D representations �3 and �4 in the double-
valued representations [23, 25]. In addition, the M̄ points have
time reversal and a time-reversal pair of �3 and �4 states are
degenerate and expected to show the Rashba spin splitting.

By assuming the mirror operation � with the yz mirror
plane for R,

R =
⎛

⎝
−1 0 0
0 1 0
0 0 1

⎞

⎠

for a polar vector operator and

R =
⎛

⎝
1 0 0
0 −1 0
0 0 −1

⎞

⎠

4
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for an axial vector operator, and the representation matrix for
the time-reversal pair states |3〉 and |4〉 is

D =
( −i 0

0 i

)

which can be constructed from the characters in C1h [23].
The diagonal {33} element for a polar vector operator in
equation (7) is given as

〈a〉33R = 〈a〉33

making the x component vanishing. The off-diagonal element
is given as

〈a〉34R = −〈a〉34

and its y component becomes zero. With use of time reversal, it
appears that the non-vanishing matrix elements of the velocity
operator are all real and can be set as 〈vy〉33 = −〈vy〉44 ≡ Y
and 〈vx 〉34 = 〈vx 〉43 ≡ X and the perturbation matrix for
q = q(cosφ, sinφ) is then given as

H ′(q) = q

(
Y sinφ X cosφ
X cosφ −Y sinφ

)
. (19)

The perturbation energy is then obtained as

ε± = ±q
(
X2 cos2 φ + Y 2 sin2 φ

)1/2
. (20)

For qx �= 0, qy = 0, the solutions can be simply written as

ε± = ±q|X | (21)

|±〉 = 1√
2

[
± X

|X | |3〉 + |4〉
]
. (22)

The matrix elements of spin are also all real by time reversal
and non-vanishing only for 〈σx 〉33 = −〈σx 〉44 ≡ S and
〈σy〉34 = 〈σy〉43 ≡ T and the spin expectation values are zero
for σx and non-zero for σy as

〈±|σy |±〉 = ± XT

|X | (23)

showing that the spin directions are along y perpendicular to q.
For qx = 0, qy �= 0,

ε± = ±q|Y | (24)

|+〉 = |3〉, |−〉 = |4〉, for Y > 0 (25)

|+〉 = |4〉, |−〉 = |3〉, for Y < 0 (26)

and the spin expectation value of σx is S (−S) when the
solution is |3〉 (|4〉) and the y component becomes zero.

Therefore, the Rashba spin splitting around M̄ may be
anisotropic in accordance with the difference between |X | and
|Y | and the resulting spin structure may be vortical or non-
vortical, governed by the signs in X , Y , S and T . In the
Si(111)-(

√
3 × √

3)–Bi surface, a hyperbolic spin structure is
predicted around M̄ [22].

4.5. Other time-reversal degenerate cases

Besides C1h, there exist some other groups where 1D
representation states are degenerate by time reversal. The most
typical case is a time-reversal pair of �4 and �5 in C3v [24].
By checking the matrix elements with the master equation in
equation (7), it is shown that the diagonal and off-diagonal
elements of the velocity operator are all zero and that no band
splitting linear in q is expected. Nevertheless, the second-order
or higher perturbation may remove the degeneracy. The same
situation may happen for a time-reversal pair of �6 in C3. It is
shown that a time-reversal pair of �4 and �5 in C3 can reveal
the ideal Rashba effect just like 2D �6 in C3v, however.

5. Summary

By using the k·p perturbation method, it is shown that
the velocity-operator term in the perturbation results in the
generalized Rashba Hamiltonian. The master equation that
the matrix elements of the velocity operator as well as the
spin-angular-momentum operator must obey is derived. On
the basis of group-theoretical consideration, 2D representation
states at k points with the group of k, C3v or C4v, always show
the ideal Rashba effect regardless of time reversal. On the other
hand, the Rashba effect expected for 2D states belonging to C2v

may not be isotropic or vortical, depending on the anisotropic
character of the relevant surface states. A time-reversal pair
at M̄ with the group of k C1h in the triangular BZ also may
reveal possibly anisotropic spin splitting and non-vortical spin
structure.
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